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| will present a Perron-Frobenius type result for nonlinear operators. This

result is stated as a global optimization algorithm for a class of constrained
opt problems.

1. Motivation: graph-based unsupervised learning aka graph partitioning
2. Perron—Frobenius theorem for (sub) multihomogeneous maps

3. Some example applications
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Matrix singular vectors, once again

Consider the constrained optimization problem

optimize  x{ Mx,
subject to  |[|x1]| = [|x2|| =1

In general, f(x1, x2) = x; Mx, is not convex. However, we know how to
compute global max and global min:

singular vectors and singular values of M:
M,'X,':)\X,', I:1,2

with My = MM, My = MTM.
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Nonlinear singular vectors

For sufficiently smooth homogeneous functions f, g, the problem

optimize  f(x)
subject to  g(x1) = g(x2) =1

with x = (x1, x»), can be brought down to

nonlinear singular vector problem
M,'(X)X,':)\X,', i = 1,2

where M;(x) are matrix-valued mappings, obtained differentiating f twice.

However, global max/min can be NP-hard...
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Motivating example: graph clustering
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Graph clustering
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Graph clustering

G=(V,E),V={1,...,nt, ECV x V
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Balanced cut problem

= min L(S)
[ 1(G) = scv min{|S|,|S|} ‘

cut(S)={j€E:i€S,jeS}, S=V\S
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General ratio-of-set-functions problem

Y(G) = mins &(S)/¥(S) is the global mimimum of the ratio of two set
functions @(S) = cut(S), ¥(S) = min{|S|, |S|} such that:

1. &, ¥ are nonnegative
2. 9(V)=v(V)=0

8/45



General ratio-of-set-functions problem

Y(G) = mins &(S)/¥(S) is the global mimimum of the ratio of two set
functions @(S) = cut(S), ¥(S) = min{|S|, |S|} such that:

1. &, ¥ are nonnegative
2. 9(V)=v(V)=0

In general, consider the problem

miO'L?(S), ¥S) = —=

with @, ¥ : 2V — R such that 1 and 2 hold
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Homogeneous exact relaxation

Computing min 4 is in general NP-hard .... can we approximate it?
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Homogeneous exact relaxation

Computing min 4 is in general NP-hard .... can we approximate it?

Theorem.

Given @, ¥ and p > 1, there exist homogeneous functions f,g : R” — R
of degree p such that, if A is a solution to

3\ Minyern  f(x)
| subjectto g(x)=1,

then A < min® < CP~1AYP  in particular A P2 mind.
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Proof’s sketch (for p = 1)

Consider the Lovasz extensions f, g of the functions ¢ and V.

L f(1s) = (5). g(1s) = ¥(S)

.rsngO VU(S) = xeR" g(x)  xeRn <g(X))

2. f(x) = X0 D(Se)|xir1 — xi| = [T O(S;)dt where S, = {k : x, > t}.
) _ ST osd L els) o)
g(x)  JIZW(Se)dt Tt W(Se) T sev ¥(S)

Based on
B Hein, Setzer, NeurlPS 2012
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Back to the clustering problem

®(S) = cut(S), ¥(S) = min{|S|,|S|}. The homogeneous functions f, g are:

1 n
f(x) =352 Al —x1°  g(x) = [Ix — mean(x)1[|f = 1

j=1

and we have that

| mingern  f(x) — A = smallest nonzero sol of:
| subjectto g(x) =1 My(x)x = Ax

where M, is a matrix-valued mapping, based on the graph p-Laplacian
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Cheeger inequality

For p = 2 we obain the famous Cheeger inequality

® M, = L = diag(Al) — A = Graph Laplacian Matrix
® X = Fiedler eigenvalue (or algebraic connectivity)

* min®¥ = y(G) = graph Cheeger constant
© A<7(G) < CVA
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Linear (vs) nonlinear spectral clustering
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f and g are nonlinear and nonconvex in general, solving

- Minyern  F(x)
| subjectto g(x)=1,

can be very challenging.

. 1
E.g. think at the result A £==Cheeger constant
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f and g are nonlinear and nonconvex in general, solving

- Minyern  F(x)
| subjectto g(x)=1,

can be very challenging.

. 1
E.g. think at the result A £==Cheeger constant

However, we can compute A to an arbitrary accuracy when f and g are
nonnegative and sub-multihomogeneous.
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Perron—Frobenius theorem for sub-multihomogeneous
mappings
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We are going to consider the

optimization of f : R” — R such that
the gradient of f is sub-multihomogeneous

To this end, we first introduce this concept.
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Multihomogeneous mappings (two variables)

Suppose x = (x1, X2) € R” with x; € R™, x, € R™.
Partition the gradient of f : R” — R as:

of = ouf , O;f = 0, f = partial derivative w.r.t. variables in x;

O f
If there exists a 2 x 2 matrix © such that

81f()\X1,X2) = @1181f(x) Blf(xl, AXZ) = @1281f(x)
821[()\X1,X2) = eglan(X) 32f(x1,)\x2) = @2282f(X)

then 8f is multihomogeneous. We write this compactly as f € hom'(©).
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Multihomogeneous functions have multihomogeneous gradient

An example of f € hom'(©) are multihomogeneous functions.
In fact, if f is such that

F(X1y ooy AXy oo ey Xim) = A¥F(X)
then it is easy to veryfy that
Oif (X1, s AXjy oy Xm) = A®18,f(x)
with
0h—1 & 0s
6 5.1 0, —1 (5.5 15T
B b G-l

18/45



Euler's characterization (two-variables)

Suppose f is twice differentiable.

Then we can partition the Hessian of f accordingly

g | Baf | oaif

B:0,f | 8r0of

Euler’'s theorem applied block-wise gives us

8181f(x)x1 = @1181f(x) 6281f(X)X2 = @1261f(x)
8182f(x)x1 = @2182f(X) 8282f(X)X2 = @2282f(X)
forall x =0

f € hom'(©) +<— {
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Euler’s characterization of multihomogeneous mappings

Definition.

r

The gradient of f : R” — R is multihomogeneous if for some m there
exists a partition of the variable x € R”

X:(Xl)--')xm)) XieRni;Zini:m
and a matrix @ € R™*™ such that
B;BJ-f(x)x,- = @;jX,'

forall i,j=1,...,m and all positive vectors x = 0
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Sub-multihomogeneity

f : R” — R twice differentiable is sub-multihomogeneous if there exists a
partition x = (x1,...,X) and a matrix © such that

10,1 =min {3 >0 : [88,(x)lx: < M ()}

forall i,j=1,...,mand x > 0

where | - | denotes absolute value taken component-wise.

We write this compactly f € subhom’(©).
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Global optimization with nonlinear Perron eigenvectors

Consider the problem

(%) Maxxern  f(X1y000y Xm)
subject to  gi(x1) =+ = gm(xm) = 1,

where:
® f € subhom'(©)
* gi€hom(l+a;), a#0
® Qg is invertible on RY |

* Both (8g;) ' : R" — R" and §;f : R" — R™ are positive mappings,
i.e. map positive vectors into positive vector
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Perron—Frobenius theorem

Let B = Diag(ay,...,an) tO.
If p(|B]) < 1/2 or p(|B|) < 1 and 8*f is a positive map, then

® There exists a unique solution x* € R” to (%) and x* > 0
® X7 are nonlinear singular vectors, solution to
*) ok ) ¥
M(x*)x? = Aix;
corresponding to the largest nonlinear sinuglar values (A, ..., Any)

® The nonlinear power method
{ y = M(x®)x[" = (8g)~" 0 8 (x¥)

k+1)_[ Y1 Ym

: k=0,1,2,...
X =

gi(y1) &m(¥m)
converges to x* as O(p(|B|)¥), for any xq > 0.
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Sketch of the proof

Let H : R” — R" be the iterator of the nonlinear power method
. x* is solution of (x) if and only if H(x*) = x*

[

2. H(K) C K where K = {x > 0: gi(x;) = 1,Vi}
3. K is a complete metric space with respect to the Thompson metric
4

. 07(H(x),H(y)) < Cér(x,y) with

C =sup
xek

diag(H(x)) | M(x)]x|

5. C<p(|B])
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Core—Periphery detection in networks
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Matrix reordering problems

Clusters (communities)
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Core—periphery

@ Borgatti, Everett, Social Networks, 1999

Core: nodes strongly connected across the whole network
Periphery: nodes strongly connected only to the core

@ Csermely, London, Wu, Uzzi, J. of Complex Networks, 2013
@ Rombach, Porter, Fowler, Mucha, SIAM Review, 2018
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Core—periphery visualization
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Core—periphery detection problem

Tasks:

1. Reorder nodes to reveal core—periphery structure

2. assign coreness score to nodes
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Core—periphery kernel optimization

Core—score vector u is such that :
if up > u; — i is closer to the core than j

E F T, D J Higham, SIAM Math of Data Science, 2019

Core—score vector as solution of the following constrained optimization

maximize fo(u) = X7;_; Ajka(u;, uj)
(cp)

subject to |jul|, =1,u >0

o 1/a
with A = adjacency matrix and k4(x, y) = (%)
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Core-periphery kernel

o large = Kq(x,y) & max{x, y}

fo(U) = 32 Ajjka(ui, uj) is large when
edges Aj = 1 involve at least one node
with large core-score
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Logistic core—periphery (LCP) random model

0.0

Random graph: Pr(i ~ j) =

Logistic function

X
0.0 02 04 06 08 1.0

1+ e—raluby)

! =: p(u)

Matrix of probabilities

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
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Connection to CP kernel

Suppose we have a sample from the LCP random graph model, with nodes in
arbitrary order.

Find u that maximizes the likelihood A(u) = TT;.; pij(u) [T;4;( 1 — pj(u))
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Connection to CP kernel

Suppose we have a sample from the LCP random graph model, with nodes in
arbitrary order.

Find u that maximizes the likelihood A(u) = TT;.; pij(u) [T;4;( 1 — pj(u))

Theorem:

If uis a node labeling (permutation) then
u solves (cp) <= u maximizes the likelihood A

(Useful for testing core—periphery detection algorithms)
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Connection with node degrees

If p =2 and o = 1 then k; = arithmetic mean

|Aulls
C <— max
() = T2l

= ||A[|2-1

and the maximizer is
u = degree vector
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Connection with eigenvector centrality

If p=1and o = 0 then Ky = geometric mean

u'Au
(cp) = e uTu p(A)
and the maximizer is

u = Perron eigenvector of A

What about the general case ......
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Using Perron—Frobenius

maximize fy(u) = izt Ajika(ui, uj)
subject to |jul|, =1,u >0

(cp)

A direct computation reveals that
* f, € subhom’(a — 1) and 8?f is positive
* g(u) = ||ul]5 € hom(p) and Og is invertible on R |

Then, if p(|B|) = |a — 1|/|p — 1| < 1 we have that (cp) has a unique
positive solution, which we can compute to an arbitrary precision
and which coincides with the nonlinear Perron eigenvector

1 Ajui?
M(u)u=Au with M(u); = —— (ua/ujaui =
i i ' &
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Qualitative results

Degree Sim-Ann Nonlinear Eig
o
a
= n~ 2k
0
>_
O
o
o
(@
3] n = 25k
£
3
£

Degree coincides with (cp) for & =1 and p =2
Convergence in a few seconds vs several minutes with Sim-Ann.
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Beyond matrix-like forms

f(x) = X Aijka(Xi, X;) still looks like a nonlinear variation of a matrix form....
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Polynomial neural networks
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Supervised learning: training a nnet

Training points: a®, ... al¥ € R" ¢ € {1,2,3} = class of a()
Activation matrices: (our variable) X = (Xi,..., X)
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Supervised learning: training a nnet

Training points: a®, ... al¥ € R" ¢ € {1,2,3} = class of a()
Activation matrices: (our variable) X = (Xi,..., X)

00 = 3 22 [ p(X)(@) ) +170(X) (@)

L(j,z) =z — log | € + e* + e* | (cross—entropy loss)

40 /45



Polynomial activation function

B A Gautier, Q Nguyen, M Hein, NeurlPS16
Train a classifier via

minX1,...,Xm f(X17 v iXm)
subject to || Xi||p, = -+ = || Xml|p, = 1,

bj —_ (Ug_bj)l (bj)nj)

with activation functions ¢;(u) = u ye ey Un;
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Polynomial activation function

B A Gautier, Q Nguyen, M Hein, NeurlPS16
Train a classifier via

minX1,...,Xm f(X17 v iXm)
subject to || Xi||p, = -+ = || Xml|p, = 1,

bj —_ (Ug_bj)l (bj)nj)

with activation functions ¢;(u) = u ye ey Un;

Theorem

There exists © = O(b) such that

70 = 5 3 [t 000 +17e()(")

i

is subhom’(©) and 8°f is positive. Conditions on b to get p(©) < 1.
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Conclusions
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Conclusions

If you have a “nonnegative problem” — check out the nonlinear PF theory

¢ Website — ftudisco.github.io/siam-nonlinear-pf-tutorial
(feedback is very welcome)

® Book — soon (next year) to come

Some important questions concern:
¢ Convergence rate of nonlinear power method (e.g. for Af(x) = Ax)

® More advanced (faster) numerical eigensolvers
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ftudisco.github.io/siam-nonlinear-pf-tutorial

Thank you very much for your attention!
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