Optimization with nonlinear Perron eigenvectors

Francesco Tudisco Gran Sasso Science Institute (Italy)

SIAM LA21 Minitutorial Applied Nonlinear Perron-Frobenius Theory

May 18, 2021

I will present a Perron-Frobenius type result for nonlinear operators. This result is stated as a global optimization algorithm for a class of constrained opt problems.

- 1. Motivation: graph-based unsupervised learning aka graph partitioning
- 2. Perron-Frobenius theorem for (sub) multihomogeneous maps
- 3. Some example applications

Consider the constrained optimization problem

$$egin{cases} ext{optimize} & m{x}_1^ op Mm{x}_2 \ ext{subject to} & \|m{x}_1\| = \|m{x}_2\| = 1 \end{cases}$$

In general, $f(x_1, x_2) = x_1^{\top} M x_2$ is not convex. However, we know how to compute global max and global min:

singular vectors and singular values of M:

$$M_i \mathbf{x}_i = \lambda \mathbf{x}_i, \quad i = 1, 2$$

with $M_1 = MM^{\top}$, $M_2 = M^{\top}M$.

For sufficiently smooth homogeneous functions f, g, the problem

$$egin{cases} ext{optimize} & f(m{x}) \ ext{subject to} & g(m{x}_1) = g(m{x}_2) = 1 \end{cases}$$

with $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2)$, can be brought down to

nonlinear singular vector problem $M_i(\mathbf{x})\mathbf{x}_i = \lambda \mathbf{x}_i, \quad i = 1, 2$

where $M_i(x)$ are matrix-valued mappings, obtained differentiating f twice.

However, global max/min can be NP-hard...

Motivating example: graph clustering

Graph clustering

Graph clustering

$$\mathcal{G} = (V, E), V = \{1, \ldots, n\}, E \subseteq V \times V$$

Balanced cut problem

$$\gamma(\mathcal{G}) = \min_{S \subseteq V} rac{\mathsf{cut}(S)}{\min\{|S|, |\overline{S}|\}}$$

$$\operatorname{cut}(S) = \{ ij \in E : i \in S, j \in \overline{S} \}, \quad \overline{S} = V \setminus S$$

 $\gamma(\mathcal{G}) = \min_{S} \Phi(S) / \Psi(S)$ is the global mimimum of the ratio of two set functions $\Phi(S) = \operatorname{cut}(S)$, $\Psi(S) = \min\{|S|, |\overline{S}|\}$ such that:

1. ϕ , ψ are nonnegative

$$\mathbf{2.} \ \Phi(V) = \Psi(V) = \mathbf{0}$$

 $\gamma(\mathcal{G}) = \min_{S} \Phi(S) / \Psi(S)$ is the global mimimum of the ratio of two set functions $\Phi(S) = \operatorname{cut}(S)$, $\Psi(S) = \min\{|S|, |\overline{S}|\}$ such that:

1. ϕ, ψ are nonnegative

$$\mathbf{2.} \ \Phi(V) = \Psi(V) = \mathbf{0}$$

In general, consider the problem

$$\min_{S\subseteq V}artheta(S), \qquad artheta(S)=rac{\phi(S)}{\psi(S)}$$

with $\Phi, \Psi: 2^V \to \mathbb{R}$ such that 1 and 2 hold

Homogeneous exact relaxation

Computing min ϑ is in general NP-hard can we approximate it?

Computing min ϑ is in general NP-hard can we approximate it?

Theorem.

Given Φ , Ψ and $p \ge 1$, there exist homogeneous functions $f, g : \mathbb{R}^n \to \mathbb{R}$ of degree p such that, if λ is a solution to

$$\lambda = \left\{egin{array}{cc} \mathsf{min}_{m{x} \in \mathbb{R}^n} & f(m{x}) \ \mathsf{subject to} & g(m{x}) = 1, \end{array}
ight.$$

then $\lambda \leq \min \vartheta \leq C^{p-1} \lambda^{1/p}$, in particular $\lambda \xrightarrow{p \to 1} \min \vartheta$.

Proof's sketch (for p = 1)

Consider the Lovasz extensions f, g of the functions Φ and Ψ . **1.** $f(\mathbb{1}_S) = \Phi(S), g(\mathbb{1}_S) = \Psi(S)$

$$\min_{S \subseteq V} \frac{\phi(S)}{\psi(S)} \geq \min_{\mathbf{x} \in \mathbb{R}^n} \frac{f(\mathbf{x})}{g(\mathbf{x})} = \min_{\mathbf{x} \in \mathbb{R}^n} f\left(\frac{\mathbf{x}}{g(\mathbf{x})}\right)$$

2.
$$f(\mathbf{x}) = \sum_{i=0}^{n-1} \Phi(S_{x_i}) |x_{i+1} - x_i| = \int_{-\infty}^{+\infty} \Phi(S_t) dt \text{ where } S_t = \{k : x_k > t\}.$$
$$\frac{f(\mathbf{x})}{g(\mathbf{x})} = \frac{\int_{-\infty}^{+\infty} \Phi(S_t) dt}{\int_{-\infty}^{+\infty} \Psi(S_t) dt} \ge \inf_t \frac{\Phi(S_t)}{\Psi(S_t)} \ge \min_{S \subseteq V} \frac{\Phi(S)}{\Psi(S)}$$

Based on

Hein, Setzer, NeurIPS 2012

 $\Phi(S) = \operatorname{cut}(S), \ \Psi(S) = \min\{|S|, |\overline{S}|\}.$ The homogeneous functions f, g are:

$$f(\mathbf{x}) = rac{1}{2} \sum_{ij=1}^{n} A_{ij} |x_i - x_j|^p$$
 $g(\mathbf{x}) = ||\mathbf{x} - \mathrm{mean}(\mathbf{x})\mathbb{1}||_p^p = 1$

and we have that

where M_p is a matrix-valued mapping, based on the graph p-Laplacian

For p = 2 we obain the famous Cheeger inequality

- $M_2 = L = \text{diag}(A\mathbb{1}) A = \text{Graph Laplacian Matrix}$
- $\lambda =$ Fiedler eigenvalue (or algebraic connectivity)
- min $artheta=\gamma(\mathcal{G})=$ graph Cheeger constant

•
$$\lambda \leq \gamma(\mathcal{G}) \leq C\sqrt{\lambda}$$

Linear (vs) nonlinear spectral clustering

p=1

$$p = 2$$

f and g are nonlinear and nonconvex in general, solving

$$\lambda = \left\{egin{array}{cc} \min_{m{x}\in\mathbb{R}^n} & f(m{x}) \ ext{subject to} & g(m{x}) = 1, \end{array}
ight.$$

can be very challenging.

E.g. think at the result $\lambda \xrightarrow{p \to 1}$ Cheeger constant

f and g are nonlinear and nonconvex in general, solving

$$\lambda = \left\{egin{array}{cc} \min_{oldsymbol{x}\in\mathbb{R}^n} & f(oldsymbol{x})\ ext{subject to} & g(oldsymbol{x}) = 1, \end{array}
ight.$$

can be very challenging.

E.g. think at the result $\lambda \xrightarrow{p \to 1}$ Cheeger constant

However, we can compute λ to an arbitrary accuracy when f and g are **nonnegative** and **sub-multihomogeneous**.

Perron–Frobenius theorem for sub-multihomogeneous mappings

We are going to consider the

optimization of $f : \mathbb{R}^n \to \mathbb{R}$ such that the gradient of f is **sub-multihomogeneous**

To this end, we first introduce this concept.

Multihomogeneous mappings (two variables)

Suppose $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2) \in \mathbb{R}^n$ with $\mathbf{x}_1 \in \mathbb{R}^{n_1}$, $\mathbf{x}_2 \in \mathbb{R}^{n_2}$. Partition the gradient of $f : \mathbb{R}^n \to \mathbb{R}$ as:

$$\partial f = \begin{bmatrix} \partial_1 f \\ \\ \hline \partial_2 f \end{bmatrix}$$
, $\partial_i f = \partial_{x_i} f = partial derivative w.r.t. variables in $x_i$$

If there exists a 2 \times 2 matrix \varTheta such that

$$\left\{egin{aligned} \partial_1 f(\lambda oldsymbol{x}_1,oldsymbol{x}_2)&= \Theta_{11}\partial_1 f(oldsymbol{x}) &\partial_1 f(oldsymbol{x}_1,\lambda oldsymbol{x}_2)&= \Theta_{12}\partial_1 f(oldsymbol{x})\ \partial_2 f(\lambda oldsymbol{x}_1,oldsymbol{x}_2)&= \Theta_{22}\partial_2 f(oldsymbol{x}) &\partial_2 f(oldsymbol{x}_1,\lambda oldsymbol{x}_2)&= \Theta_{22}\partial_2 f(oldsymbol{x}) \end{array}
ight.$$

then ∂f is multihomogeneous. We write this compactly as $f \in \hom'(\Theta)$.

Multihomogeneous functions have multihomogeneous gradient

An example of $f \in \hom'(\Theta)$ are multihomogeneous functions. In fact, if f is such that

$$f(\boldsymbol{x}_1,\ldots,\lambda \boldsymbol{x}_j,\ldots,\boldsymbol{x}_m)=\lambda^{\delta_j}f(\boldsymbol{x})$$

then it is easy to veryfy that

$$\partial_j f(oldsymbol{x}_1,\ldots,\lambdaoldsymbol{x}_j,\ldots,oldsymbol{x}_m)=\lambda^{\Theta_{ij}}\partial_j f(oldsymbol{x})$$

with

$$egin{aligned} \Theta = egin{bmatrix} \delta_1 & \delta_2 & \dots & \delta_s \ \delta_1 & \delta_2 - 1 & \dots & \delta_s \ dots & \ddots & dots \ \delta_1 & \dots & \delta_{s-1} & \delta_s - 1 \end{bmatrix} = \mathbb{1} \delta^ op - I \,. \end{aligned}$$

Euler's characterization (two-variables)

Suppose f is twice differentiable.

Then we can partition the Hessian of f accordingly

$$\partial^2 f = egin{bmatrix} \partial_1 \partial_1 f & \partial_2 \partial_1 f \ \hline & \partial_1 \partial_2 f & \partial_2 \partial_2 f \end{bmatrix}$$

Euler's theorem applied block-wise gives us

$$f \in \hom'(\Theta) \iff \begin{cases} \partial_1 \partial_1 f(x) x_1 = \Theta_{11} \partial_1 f(x) & \partial_2 \partial_1 f(x) x_2 = \Theta_{12} \partial_1 f(x) \\ \partial_1 \partial_2 f(x) x_1 = \Theta_{21} \partial_2 f(x) & \partial_2 \partial_2 f(x) x_2 = \Theta_{22} \partial_2 f(x) \\ & \text{for all } x \succ 0 \end{cases}$$

Definition.

The gradient of $f : \mathbb{R}^n \to \mathbb{R}$ is multihomogeneous if for some *m* there exists a partition of the variable $x \in \mathbb{R}^n$

$$oldsymbol{x} = (oldsymbol{x}_1, \ldots, oldsymbol{x}_m), \qquad oldsymbol{x}_i \in \mathbb{R}^{n_i}, \sum_i n_i = m_i$$

and a matrix $\boldsymbol{\varTheta} \in \mathbb{R}^{m imes m}$ such that

 $\partial_i \partial_j f(\mathbf{x}) \mathbf{x}_i = \Theta_{ij} \mathbf{x}_i$

for all $i, j = 1, \ldots, m$ and all positive vectors $\boldsymbol{x} \succ 0$

 $f : \mathbb{R}^n \to \mathbb{R}$ twice differentiable is sub-multihomogeneous if there exists a partition $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_m)$ and a matrix Θ such that

$$egin{aligned} |\Theta_{ij}| &= \min\left\{\lambda \geq 0 \,:\, |\partial_i\partial_j f(oldsymbol{x})|oldsymbol{x}_i \leq \lambda \, |\partial_i f(oldsymbol{x})|
ight\} \ & ext{ for all } i,j=1,\ldots,m ext{ and } oldsymbol{x} \succ 0 \end{aligned}$$

where $|\cdot|$ denotes absolute value taken component-wise.

We write this compactly $f \in \text{subhom}'(\Theta)$.

Global optimization with nonlinear Perron eigenvectors

Consider the problem

$$(*) \qquad \left\{ egin{array}{cc} \max_{oldsymbol{x}\in \mathbb{R}^n} & f(oldsymbol{x}_1,\ldots,oldsymbol{x}_m) \ ext{ subject to } & g_1(oldsymbol{x}_1)=\cdots=g_m(oldsymbol{x}_m)=1, \end{array}
ight.$$

where:

- $f \in \text{subhom}'(\Theta)$
- $g_i \in \mathsf{hom}(1+lpha_i), \ lpha_i \neq 0$
- ∂g_i is invertible on $\mathbb{R}^{n_i}_{++}$
- Both (∂g_i)⁻¹: ℝ^{n_i} → ℝ^{n_i} and ∂_if : ℝⁿ → ℝ^{n_i} are positive mappings, i.e. map positive vectors into positive vector

Perron–Frobenius theorem

CC

Let $B = \text{Diag}(\alpha_1, \dots, \alpha_m)^{-1} \Theta$. If $\rho(|B|) < 1/2$ or $\rho(|B|) < 1$ and $\partial^2 f$ is a positive map, then

- There exists a unique solution $x^* \in \mathbb{R}^n$ to (*) and $x^* \succ 0$
- x_i^* are nonlinear singular vectors, solution to

$$M(\mathbf{x}^*)\mathbf{x}_i^* = \lambda_i \mathbf{x}_i^*$$

corresponding to the largest nonlinear sinuglar values $(\lambda_1, \ldots, \lambda_m)$

• The nonlinear power method

$$\begin{cases} \mathbf{y} = M(\mathbf{x}^{(k)})\mathbf{x}_i^{(k)} = (\partial g_i)^{-1} \circ \partial_i f(\mathbf{x}^{(k)}) \\ \mathbf{x}^{(k+1)} = \begin{bmatrix} \mathbf{y}_1 \\ g_1(\mathbf{y}_1) \end{bmatrix} & \cdots & \frac{\mathbf{y}_m}{g_m(\mathbf{y}_m)} \end{cases} \quad k = 0, 1, 2, \dots$$

onverges to \mathbf{x}^* as $O(\rho(|B|)^k)$, for any $\mathbf{x}_0 \succ 0$.

Sketch of the proof

Let $H : \mathbb{R}^n \to \mathbb{R}^n$ be the iterator of the nonlinear power method **1.** x^* is solution of (*) if and only if $H(x^*) = x^*$

2.
$$H(\mathcal{K}) \subseteq \mathcal{K}$$
 where $\mathcal{K} = \{ m{x} \succ 0 : g_i(m{x}_i) = 1, orall i \}$

- 3. \mathcal{K} is a complete metric space with respect to the Thompson metric $\delta_{\mathcal{T}}$
- **4.** $\delta_{\mathcal{T}}(H(\mathbf{x}), H(\mathbf{y})) \leq C \, \delta_{\mathcal{T}}(\mathbf{x}, \mathbf{y})$ with

$$C = \sup_{\boldsymbol{x} \in \mathcal{K}} \left\| \operatorname{diag}(H(\boldsymbol{x}))^{-1} | M(\boldsymbol{x}) | \boldsymbol{x} \right\|_{\infty}$$

5. $C \le \rho(|B|)$

Core-Periphery detection in networks

Matrix reordering problems

Clusters (communities)

Lattice (small-world)

Bipartite (anti-communities)

Core-periphery

Borgatti, Everett, Social Networks, 1999

Core: nodes strongly connected across the whole network **Periphery**: nodes strongly connected only to the core

Sermely, London, Wu, Uzzi, J. of Complex Networks, 2013

Rombach, Porter, Fowler, Mucha, SIAM Review, 2018

Core-periphery visualization

Core-periphery detection problem

Tasks:

- 1. Reorder nodes to reveal core-periphery structure
- 2. assign coreness score to nodes

Core-periphery kernel optimization

Core-score vector \boldsymbol{u} is such that : if $u_i > u_j \implies i$ is closer to the core than j

F T, D J Higham, SIAM Math of Data Science, 2019

Core-score vector as solution of the following constrained optimization

$$(cp) \qquad \begin{cases} \text{maximize} & f_{\alpha}(\boldsymbol{u}) = \sum_{i,j=1}^{n} A_{ij} \kappa_{\alpha}(u_i, u_j) \\ \text{subject to} & \|\boldsymbol{u}\|_{p} = 1, \boldsymbol{u} \succeq 0 \end{cases}$$

with
$$A=$$
 adjacency matrix and $\kappa_{lpha}(x,y)=\left(rac{x^{lpha}+y^{lpha}}{2}
ight)^{1/lpha}$

$$lpha$$
 large $\Rightarrow \kappa_{lpha}(x,y) pprox \max\{x,y\}$

 $f_{\alpha}(\boldsymbol{u}) = \sum_{ij} A_{ij} \kappa_{\alpha}(u_i, u_j)$ is large when edges $A_{ij} = 1$ involve at least one node with large core-score

Logistic core-periphery (LCP) random model

$$\mathsf{Random} \; \mathsf{graph}: \; \mathsf{Pr}(i \sim j) = rac{1}{1 + e^{-\kappa_{lpha}(u_i, u_j)}} =: \mathsf{p}_{ij}(oldsymbol{u})$$

Matrix of probabilities

Suppose we have a sample from the LCP random graph model, with nodes in arbitrary order.

Find u that maximizes the likelihood $\lambda(u) = \prod_{i \sim j} p_{ij}(u) \prod_{i \neq j} (1 - p_{ij}(u))$

Suppose we have a sample from the LCP random graph model, with nodes in arbitrary order.

Find u that maximizes the **likelihood** $\lambda(u) = \prod_{i \sim j} p_{ij}(u) \prod_{i \neq j} (1 - p_{ij}(u))$

Theorem:

If u is a node labeling (permutation) then u solves (cp) $\iff u$ maximizes the likelihood λ

(Useful for testing core-periphery detection algorithms)

If p=2 and lpha=1 then $\kappa_1=$ arithmetic mean

$$(\mathsf{cp}) \iff \max_{\boldsymbol{u} \geq 0} \frac{\|A\boldsymbol{u}\|_1}{\|\boldsymbol{u}\|_2} = \|A\|_{2 \to 1}$$

and the maximizer is

 $u = degree \ vector$

If p=1 and lpha=0 then $\kappa_0=$ geometric mean

(cp)
$$\iff \max_{\boldsymbol{u} \ge 0} \frac{\boldsymbol{u}^T A \boldsymbol{u}}{\boldsymbol{u}^T \boldsymbol{u}} = \rho(A)$$

and the maximizer is

u = Perron eigenvector of A

What about the general case

$$\begin{array}{l} \text{(cp)} \\ \begin{cases} \text{maximize} & f_{\alpha}(\boldsymbol{u}) = \sum_{i,j=1}^{n} A_{ij} \kappa_{\alpha}(u_{i},u_{j}) \\ \text{subject to} & \|\boldsymbol{u}\|_{p} = 1, \boldsymbol{u} \succeq 0 \end{cases} \end{array}$$

A direct computation reveals that

- $f_{lpha} \in \mathsf{subhom}'(lpha-1)$ and $\partial^2 f$ is positive
- $g(\boldsymbol{u}) = \|\boldsymbol{u}\|_p^p \in \mathsf{hom}(p)$ and ∂g is invertible on \mathbb{R}^n_{++}

Then, if $\rho(|B|) = |\alpha - 1|/|p - 1| < 1$ we have that (cp) has a **unique positive solution**, which we can **compute to an arbitrary precision** and which coincides with the **nonlinear Perron eigenvector** $M(u)u = \lambda u$ with $M(u)_{ij} = \frac{1}{u_i^{1-\alpha}} \frac{A_{ij} u_j^{\alpha-2}}{(u_i^{\alpha}/u_i^{\alpha} + 1)^{\frac{1-\alpha}{\alpha}}}$

Qualitative results

Degree coincides with (cp) for $\alpha = 1$ and p = 2Convergence in a **few seconds** vs **several minutes** with Sim-Ann. $f(x) = \sum_{ij} A_{ij} \kappa_{\alpha}(x_i, x_j)$ still looks like a nonlinear variation of a matrix form....

Polynomial neural networks

Supervised learning: training a nnet

Training points: $a^{(1)}, \ldots, a^{(d)} \in \mathbb{R}^n$, $c_i \in \{1, 2, 3\} = \text{class of } a^{(i)}$ **Activation matrices:** (our variable) $X = (X_1, \ldots, X_m)$

Supervised learning: training a nnet

Training points: $a^{(1)}, \ldots, a^{(d)} \in \mathbb{R}^n$, $c_i \in \{1, 2, 3\} = \text{class of } a^{(i)}$ Activation matrices: (our variable) $X = (X_1, \ldots, X_m)$ $f(X) = \frac{1}{d} \sum_{i=1}^d \left[L\left(c_i, \varphi(X)(a^{(i)})\right) + \mathbb{1}^\top \varphi(X)(a^{(i)}) \right]$ $L(j, z) = z_j - \log\left(e^{z_1} + e^{z_2} + e^{z_3}\right)$ (cross-entropy loss)

Polynomial activation function

A Gautier, Q Nguyen, M Hein, NeurIPS16 Train a classifier via $\begin{cases} \min_{X_1,...,X_m} & f(X_1,...,X_m) \\ \text{ subject to } & ||X_1||_{p_1} = \cdots = ||X_m||_{p_m} = 1, \end{cases}$ with activation functions $\varphi_i(\boldsymbol{u}) = \boldsymbol{u}^{\boldsymbol{b}_j} = (u_1^{(\boldsymbol{b}_j)_1}, \ldots, u_{n_i}^{(\boldsymbol{b}_j)_{n_j}})$

Polynomial activation function

A Gautier, Q Nguyen, M Hein, NeurIPS16 Train a classifier via $\begin{cases} \min_{X_1,...,X_m} f(X_1,...,X_m) \\ \text{ subject to } \|X_1\|_{p_1} = \cdots = \|X_m\|_{p_m} = 1, \\ \text{ with activation functions } \varphi_j(\boldsymbol{u}) = \boldsymbol{u}^{\boldsymbol{b}_j} = (u_1^{(\boldsymbol{b}_j)_1}, \ldots, u_{n_j}^{(\boldsymbol{b}_j)_{n_j}}) \end{cases}$

Theorem

There exists $\Theta = \Theta(\boldsymbol{b})$ such that $f(X) = \frac{1}{d} \sum_{i} \left[L(c_i, \varphi(X)(\boldsymbol{a}^{(i)})) + \mathbb{1}^\top \varphi(X)(\boldsymbol{a}^{(i)}) \right]$

is subhom'(Θ) and $\partial^2 f$ is positive. Conditions on **b** to get $\rho(\Theta) < 1$.

Example 2D decision boundary

Conclusions

If you have a "nonnegative problem" – check out the nonlinear PF theory

- Website ftudisco.github.io/siam-nonlinear-pf-tutorial (feedback is very welcome)
- Book soon (next year) to come

Some important questions concern:

- Convergence rate of nonlinear power method (e.g. for $Af(x) = \lambda x$)
- More advanced (faster) numerical eigensolvers

Thank you very much for your attention!