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Outline

I will present a Perron-Frobenius type result for nonlinear operators. This
result is stated as a global optimization algorithm for a class of constrained
opt problems.

1. Motivation: graph-based unsupervised learning aka graph partitioning

2. Perron–Frobenius theorem for (sub) multihomogeneous maps

3. Some example applications
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Matrix singular vectors, once again

Consider the constrained optimization problem

8<
:optimize x>1 Mx2

subject to kx1k = kx2k = 1

In general, f (x1; x2) = x>1 Mx2 is not convex. However, we know how to
compute global max and global min:

singular vectors and singular values of M :
Mix i = �x i , i = 1; 2

with M1 = MM>, M2 = M>M .
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Nonlinear singular vectors

For sufficiently smooth homogeneous functions f ; g , the problem

8<
:optimize f (x)

subject to g(x1) = g(x2) = 1

with x = (x1; x2), can be brought down to

nonlinear singular vector problem
Mi(x)x i = �x i , i = 1; 2

where Mi(x) are matrix-valued mappings, obtained differentiating f twice.

However, global max/min can be NP-hard...
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Motivating example: graph clustering
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Graph clustering

G = (V ;E ), V = f1; : : : ; ng, E � V � V
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Balanced cut problem

S

S

cut(S)

(G) = min
S�V

cut(S)

minfjS j; jS jg

cut(S) = fij 2 E : i 2 S ; j 2 Sg, S = V n S
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General ratio-of-set-functions problem

(G) = minS Φ(S)=Ψ(S) is the global mimimum of the ratio of two set
functions Φ(S) = cut(S), Ψ(S) = minfjS j; jS jg such that:

1. Φ;Ψ are nonnegative

2. Φ(V ) = Ψ(V ) = 0

In general, consider the problem

min
S�V

#(S); #(S) =
Φ(S)

Ψ(S)

with Φ;Ψ : 2V ! R such that 1 and 2 hold
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Homogeneous exact relaxation

Computing min# is in general NP-hard .... can we approximate it?
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Homogeneous exact relaxation

Computing min# is in general NP-hard .... can we approximate it?

Theorem.

Given Φ;Ψ and p � 1, there exist homogeneous functions f ; g : Rn ! R
of degree p such that, if � is a solution to

� =

(
minx2Rn f (x)
subject to g(x) = 1;

then � � min# � C p�1�1=p , in particular �
p!1��! min#.
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Proof’s sketch (for p = 1)

Consider the Lovasz extensions f ; g of the functions Φ and Ψ .

1. f (1S) = Φ(S), g(1S) = Ψ(S)

min
S�V

Φ(S)

Ψ(S)
� min

x2Rn

f (x)

g(x)
= min

x2Rn
f
� x
g(x)

�

2. f (x) =
Pn�1

i=0 Φ(Sxi )jxi+1 � xi j =
R+1
�1 Φ(St)dt where St = fk : xk > tg.

f (x)

g(x)
=

R+1
�1 Φ(St)dtR+1
�1 Ψ(St)dt

� inf
t

Φ(St)

Ψ(St)
� min

S�V

Φ(S)

Ψ(S)

Based on

Hein, Setzer, NeurIPS 2012
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Back to the clustering problem

Φ(S) = cut(S), Ψ(S) = minfjS j; jS jg. The homogeneous functions f ; g are:

f (x) =
1

2

nX
ij=1

Aij jxi � xj jp g(x) = kx �mean(x)1kpp = 1

and we have that

� =

(
minx2Rn f (x)
subject to g(x) = 1

() � = smallest nonzero sol of:
Mp(x)x = �x

where Mp is a matrix-valued mapping, based on the graph p-Laplacian
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Cheeger inequality

For p = 2 we obain the famous Cheeger inequality

� M2 = L = diag(A1)� A = Graph Laplacian Matrix

� � = Fiedler eigenvalue (or algebraic connectivity)

� min# = (G) = graph Cheeger constant

� � � (G) � C
p
�

12 / 45



Linear (vs) nonlinear spectral clustering

p = 2 p = 1
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Drawback

f and g are nonlinear and nonconvex in general, solving

� =

(
minx2Rn f (x)
subject to g(x) = 1;

can be very challenging.

E.g. think at the result �
p!1��!Cheeger constant

However, we can compute � to an arbitrary accuracy when f and g are
nonnegative and sub-multihomogeneous.
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Perron–Frobenius theorem for sub-multihomogeneous

mappings
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Setting

We are going to consider the

optimization of f : Rn ! R such that
the gradient of f is sub-multihomogeneous

To this end, we first introduce this concept.
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Multihomogeneous mappings (two variables)

Suppose x = (x1; x2) 2 Rn with x1 2 Rn1 , x2 2 Rn2 .

Partition the gradient of f : Rn ! R as:

@f =

2
6664 @1f

@2f

3
7775 ; @i f = @x i f = partial derivative w.r.t. variables in x i

If there exists a 2� 2 matrix Θ such that8<
:@1f (�x1; x2) = Θ11@1f (x) @1f (x1; �x2) = Θ12@1f (x)

@2f (�x1; x2) = Θ21@2f (x) @2f (x1; �x2) = Θ22@2f (x)

then @f is multihomogeneous. We write this compactly as f 2 hom0(Θ).
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Multihomogeneous functions have multihomogeneous gradient

An example of f 2 hom0(Θ) are multihomogeneous functions.
In fact, if f is such that

f (x1; : : : ; �x j ; : : : ; xm) = ��j f (x)

then it is easy to veryfy that

@j f (x1; : : : ; �x j ; : : : ; xm) = �Θij@j f (x)

with

Θ =

2
66664
�1 � 1 �2 : : : �s
�1 �2 � 1 : : : �s
...

. . .
...

�1 : : : �s�1 �s � 1

3
77775 = 1�> � I :
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Euler’s characterization (two-variables)

Suppose f is twice differentiable.

Then we can partition the Hessian of f accordingly

@2f =

2
6664 @1@1f @2@1f

@1@2f @2@2f

3
7775

Euler’s theorem applied block-wise gives us

f 2 hom0(Θ) ()
8<
:@1@1f (x)x1 = Θ11@1f (x) @2@1f (x)x2 = Θ12@1f (x)

@1@2f (x)x1 = Θ21@2f (x) @2@2f (x)x2 = Θ22@2f (x)

. for all x � 0
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Euler’s characterization of multihomogeneous mappings

Definition.

The gradient of f : Rn ! R is multihomogeneous if for some m there
exists a partition of the variable x 2 Rn

x = (x1; : : : ; xm); x i 2 Rni ;
P

ini = m

and a matrix Θ 2 Rm�m such that

@i@j f (x)x i = Θijx i

for all i ; j = 1; : : : ;m and all positive vectors x � 0
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Sub-multihomogeneity

f : Rn ! R twice differentiable is sub-multihomogeneous if there exists a
partition x = (x1; : : : ; xm) and a matrix Θ such that

jΘij j = min
�
� � 0 : j@i@j f (x)jx i � � j@i f (x)j

�

for all i ; j = 1; : : : ;m and x � 0

where j � j denotes absolute value taken component-wise.

We write this compactly f 2 subhom0(Θ).
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Global optimization with nonlinear Perron eigenvectors

Consider the problem

(�)

(
maxx2Rn f (x1; : : : ; xm)
subject to g1(x1) = � � � = gm(xm) = 1;

where:

� f 2 subhom0(Θ)

� gi 2 hom(1 + �i), �i 6= 0

� @gi is invertible on Rni
++

� Both (@gi)
�1 : Rni ! Rni and @i f : Rn ! Rni are positive mappings,

i.e. map positive vectors into positive vector
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Perron–Frobenius theorem

Let B = Diag(�1; : : : ; �m)�1Θ.
If �(jB j) < 1=2 or �(jB j) < 1 and @2f is a positive map, then

� There exists a unique solution x� 2 Rn to (�) and x� � 0

� x�i are nonlinear singular vectors, solution to

M(x�)x�i = �ix�i
corresponding to the largest nonlinear sinuglar values (�1; : : : ; �m)

� The nonlinear power method8<
: y = M(x (k))x (k)

i = (@gi)
�1 � @i f (x (k))

x (k+1) =
h y1

g1(y1)
� � � ym

gm(ym)

i k = 0; 1; 2; : : :

converges to x� as O(�(jB j)k), for any x0 � 0.
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Sketch of the proof

Let H : Rn ! Rn be the iterator of the nonlinear power method

1. x� is solution of (�) if and only if H(x�) = x�

2. H(K) � K where K = fx � 0 : gi(x i) = 1;8ig
3. K is a complete metric space with respect to the Thompson metric �T

4. �T (H(x);H(y)) � C �T (x ; y) with

C = sup
x2K

diag(H(x))�1jM(x)jx

1

5. C � �(jB j)
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Core–Periphery detection in networks
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Matrix reordering problems

Clusters (communities) Bipartite (anti–communities)

Lattice (small–world) Core–periphery
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Core–periphery

Borgatti, Everett, Social Networks, 1999

Core: nodes strongly connected across the whole network
Periphery: nodes strongly connected only to the core

Csermely, London, Wu, Uzzi, J. of Complex Networks, 2013

Rombach, Porter, Fowler, Mucha, SIAM Review, 2018
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Core–periphery visualization
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Core–periphery detection problem

Tasks:

1. Reorder nodes to reveal core–periphery structure

2. assign coreness score to nodes
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Core–periphery kernel optimization

Core–score vector u is such that :
if ui > uj =) i is closer to the core than j

F T, D J Higham, SIAM Math of Data Science, 2019

Core–score vector as solution of the following constrained optimization

(cp)

8<
:

maximize f�(u) =
Pn

i ;j=1 Aij��(ui ; uj)

subject to kukp = 1;u � 0

with A = adjacency matrix and ��(x ; y) =
�

x�+y�

2

�1=�
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Core-periphery kernel

� large ) ��(x ; y) � maxfx ; yg

f�(u) =
P

ij Aij��(ui ; uj) is large when
edges Aij = 1 involve at least one node
with large core-score
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Logistic core–periphery (LCP) random model

Random graph: Pr(i � j) =
1

1 + e���(ui ;uj )
=: pij(u)

Logistic function
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Connection to CP kernel

Suppose we have a sample from the LCP random graph model, with nodes in
arbitrary order.

Find u that maximizes the likelihood �(u) =
Q

i�j pij(u)
Q

i 6�j( 1� pij(u) )

Theorem:

If u is a node labeling (permutation) then
u solves (cp) () u maximizes the likelihood �

(Useful for testing core–periphery detection algorithms)
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Connection with node degrees

If p = 2 and � = 1 then �1 = arithmetic mean

(cp) () max
u�0

kAuk1
kuk2 = kAk2!1

and the maximizer is
u = degree vector
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Connection with eigenvector centrality

If p = 1 and � = 0 then �0 = geometric mean

(cp) () max
u�0

uTAu
uTu

= �(A)

and the maximizer is

u = Perron eigenvector of A

What about the general case ......
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Using Perron–Frobenius

(cp)

8<
:

maximize f�(u) =
Pn

i ;j=1 Aij��(ui ; uj)

subject to kukp = 1;u � 0

A direct computation reveals that
� f� 2 subhom0(�� 1) and @2f is positive
� g(u) = kukpp 2 hom(p) and @g is invertible on Rn

++

Then, if �(jB j) = j� � 1j=jp � 1j < 1 we have that (cp) has a unique
positive solution, which we can compute to an arbitrary precision
and which coincides with the nonlinear Perron eigenvector

M(u)u = �u with M(u)ij =
1

u1��
i

Aij u
��2
j

(u�
i =u

�
j + 1)

1��
�
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Qualitative results

Degree Sim-Ann Nonlinear Eig
Y

ea
st

P
P

I

n � 2k

In
te

rn
et

20
06

n � 25k

Degree coincides with (cp) for � = 1 and p = 2
Convergence in a few seconds vs several minutes with Sim-Ann.
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Beyond matrix-like forms

f (x) =
P

ij Aij��(xi ; xj) still looks like a nonlinear variation of a matrix form....
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Polynomial neural networks
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Supervised learning: training a nnet

Training points: a(1); : : : ; a(d) 2 Rn, ci 2 f1; 2; 3g = class of a(i)

Activation matrices: (our variable) X = (X1; : : : ;Xm)

f (X ) = 1
d

Pd
i=1

�
L
�
ci ; '(X )(a(i))

�
+ 1>'(X )(a(i))

�

L(j ; z) = zj � log
�
ez1 + ez2 + ez3

�
(cross–entropy loss)
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Polynomial activation function

A Gautier, Q Nguyen, M Hein, NeurIPS16
Train a classifier via(

minX1;:::;Xm f (X1; : : : ;Xm)
subject to kX1kp1 = � � � = kXmkpm = 1;

with activation functions 'j(u) = ubj = (u
(bj )1
1 ; : : : ; u

(bj )nj
nj )

Theorem

There exists Θ = Θ(b) such that

f (X ) =
1

d

X
i

�
L
�
ci ; '(X )(a(i))

�
+ 1>'(X )(a(i))

�

is subhom0(Θ) and @2f is positive. Conditions on b to get �(Θ) < 1.
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Example 2D decision boundary
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Conclusions
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Conclusions

If you have a “nonnegative problem” – check out the nonlinear PF theory

� Website – ftudisco.github.io/siam-nonlinear-pf-tutorial

(feedback is very welcome)

� Book – soon (next year) to come

Some important questions concern:

� Convergence rate of nonlinear power method (e.g. for Af (x) = �x)

� More advanced (faster) numerical eigensolvers
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Thank you very much for your attention!
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