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Centrality

Given a graph G = (V ;E ), define a function that quantifies the “importance”
of nodes, based only on the topology of the graph.

1
2

3

4

5 Aij =

8<
:1 i ! j

0 otherwise

Basic example: count the degree.

d in
i =

X
j :j!i

1 = (A>1) and dout
i =

X
j :i!j

1 = (A1)i

If G is not directed d in = d out = d .
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Starred star example

Degree fails to capture global structure.
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If q > p degree assigns larger centrality to leaves than the center of the star.
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Mutual reinforcement 1

Bonacich index: prototype of mutually reinforcing property

“Importance of nodes is proportional to the importance of their neighbors”

ui /
X
j :j!i

uj =
nX

j=1

Ajiuj that is u / A> u

=) u must be the Perron eigenvector of A>.
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Mutual reinforcement 2

HITS: two mutual reinforcing indices for hubs (information spreaders) and
authorities (information carriers)

“Important hubs point to relevant authorities; relevant authorities are pointed
by important hubs”

8<
:ai /

P
j :j!i hj =

Pn
j=1 Ajihj

hi /
P

j :i!j aj =
Pn

j=1 Aijaj
that is

8<
:a / A>h
h / Aa

=) a and h must be the (left and right) Perron singular vectors of A.
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Drawbacks

Centrality scores based on eigenvectors/singular vectors of matrices are among
the most popular and useful.

We identify two drawbacks:

� they are constrained to linear proportionality relations

� they may be not well-defined, even for simple graphs

Nonlinear Perron eigenvectors/singular vectors allow much greater flexibility
and identify the “correct” centrality
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Two illustrative examples
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Illustrative example 1

G = A =

2
664

1
. . .

1

3
775

Any x � 0 is a Bonacich centrality Ax = x .

There is a unique nonnegative solution x� of

Af (x) = �x ; f (x) = x1�"

for any " 2 (0; 1), and x� = (1; 1; : : : ; 1).

Proof: The mapping F (x) = Af (x) is homogeneous of degree � = 1 � ".
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Illustrative example 2

1

2 3 4 5

6

A =

2
64

1 ��� 1
1
...
1

3
75

Any h = (�; �; : : : ; �; 0) and a = (0; ; : : : ; ; �) with �; �; ; � > 0 are hub
and authority centralities A>h = �a, Aa = �h.
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Illustrative example 2
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A =

2
64

1 ��� 1
1
...
1

3
75

For any �� < 1 there is a unique nonnegative pair of solutions h�; a� to

A>h� = �a; Aa� = �h

h� a� h� a� h� a� h� a�

(�; �) 0.5 0.5 0.9 0.9 0.5 0.9 0.9 0.5

n
o
d
es

1 0.39 0.0 0.34 0.0 0.47 0.0 0.24 0.0
2-5 0.15 0.15 0.16 0.16 0.13 0.19 0.19 0.13
6 0.0 0.39 0.0 0.34 0.0 0.24 0.0 0.47

Proof: the mapping F (x ; y) = (Ay�;A>x�) is multihom of degree Θ = [ �
� ]
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Higher-order network setting
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Higher-order network models

In many applications we are confronted with “higher-order interaction data”.

Relational data is full of interactions that happen in groups. For example,
friendship relations very often happen in groups that are strictly larger than
two individuals. Moreover, interactions naturally occur on multiple layers, for
example work relations, sport relations, friendship relations, etc.

We consider the following two settings:

� Multilayer

� Hypergraph
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Multi-layer network centrality

A multi-layer network G is a sequence G = (G1; : : : ;G`) where each
Gk = (V ;Ek) is a network on the same set of nodes V . Each Gk is called a
layer of G.

1
1M. De Domenico et al., J. of Complex Networks, 2015
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“Linearization” strategies

Aggregate layer connections
[Tsuda et al., 2005], [Zhou et al., 2007], [Solà et al., 2013]
For ω > 0 define Aagg =

P`
k=1 !k adj(Gk).

Centrality: x = Perron eigenvector of Aagg

Aggregate layer importances [Battiston et al., 2014]
Let xk = Bonacich eigenvector of layer k . Centrality: x =

P`
k=1 !k xk

Build a supra-adjacency matrix
[De Domenico et al., 2015], [Taylor et al, 2017] [Taylor et al., 2020]2
64

adj(G1) I ::: I

I adj(G2)

. . .
.
.
.

.

.

.
. . .

. . . I
I ::: I adj(G`)

3
75
2
64

x1
.
.
.

.

.

.
x`

3
75 = �

2
64

x1
.
.
.

.

.

.
x`

3
75 Centrality: x =

P`
k=1 !k xk
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Multihomogeneous setting

T = (Tijk) adjacency tensor of G: Tijk = 1 iff i ! j on layer k

8<
:�xi =

P
jk Tijkxjzk

�zk =
P

ij Tijkxixj
�; � > 0

However:

� does this system of polynomial equations have a positive solution ?

� if yes, is that solution uniquely defined ?

Example: n = ` = 2(
T1;1;1 = 6 T1;2;1 = 199=7 T2;1;1 = 16=7 T2;2;1 = 11
T1;1;2 = 61=7 T1;2;2 = 6 T2;1;2 = 29 T2;2;2 = 16=7

x = 1
3
(2; 1), z = 1

3
(1; 2) and x = 1

4
(1; 3), z = 1

4
(3; 1) are solutions
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Multihomogeneous centrality

8<
:� f (xi) =

P
jk Tijkxjzk

� g(zk) =
P

ij Tijkxixj
�; � > 0

f = hom of deg �
g = hom of deg �

(x ; z) is the Perron eigenvector of F multihomogeneous, with

Θ =

"
1=� 1=�
2=� 0

#

Thus:

� For �(�� 1) > 2: unique, positive and computable solution

� We define an importance for both nodes and layers

� We do not need any irreducibility assumption on G
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In practice (European Air Transports)
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Centrality drawing

Geographical location of the top five European airports according to:

� [F. T. et al., SIAM J. Appl. Math.] (left)

� [De Domenico et al., Nature Comm.] (right)
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Hypergraphs

Hypergraph:

� H = (V ; E) where e 2 E can contain an arbitrary number of nodes
(in the graph case each e contains exactly two nodes)

� w(e) > 0 denotes the weight on each edge
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Example

Journal papers p1; p2; p3; : : : and authors a1; a2; a3; : : :

a1

a3

a2

p4

p3

p2

p6

p1

p7 p5

Coauthorship hypergraph

19 / 24



Graph projection approach

Transform H into a graph via some form of flattening (or projection)

Most famous example: clique-expansion graph

Aij =
X

e: i ;j2e

w(e)

with w(e) the weights of the original hypergraph.

Other approaches: clique averaging [Agarwal et al, 2005]; connectivity graph
expansion [Banerjee, 2021], [Ferraz de Arruda et al, 2021]; star expansion
[Zien et al., 1999].

20 / 24



Tensor eigenvector approach

Represent the hypergraph via a tensor

Ti1;:::;ik =

8<
:w(e) e = (i1; : : : ; ik) 2 E

0 otherwise

This is a particularly natural approach in the case of uniform hypergraphs.

Centrality xi of node i proportional to the product of the centralities of nodes
on the hyperedge e = (i ; i2; : : : ; ik) 2 E [Benson, 2019]

X
i2;:::;ik

Ti ;i2;:::;imxi2xi3 � � � xim = � jxi j
psign(xi)
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Beyond matrices and tensors

X
i2;:::;ik

Ti ;i2;:::;imxi2xi3 � � � xim = � jxi j
psign(xi)

� Limited to product of importances on each hyperedge e

� Use of T is limited to uniform hypergraphs

For a general hypergraph H :

X
e2E:i2e

w(e)f (xj1; : : : ; xjke ) = � g(xi)

where j1; : : : ; jke are the nodes different from i in the hyperedge e 2 E .

Thursday May 20, @11:55, Minisymposium on Latest Advances in Spectral
Linear Algebra in Network Science
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Machine learning explainability metrics

Exaplainability: provide a value that quantifies the effect of the i -th feature for
the model prediction on each datapoint.

ML classifier f . Explainability (directed) hypergraph H with edge weight:

w(S ; j) = marginal impact that j has on f given the features in S [ fjg

Soon on arxiv: [Gautier, Tudisco et al., Explainability hypergraphs]
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Thank you! Any question?

Antoine Gautier & Francesco Tudisco
https://ftudisco.github.io/siam-nonlinear-pf-tutorial/

(feedback very welcome)

See you soon at Part 2 @ 11:15 CT
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